
Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Porting Radian's Block Translation Layer
for Zoned Flash to SPDK

Bob Varney

Radian Memory Systems

July 2020

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Legal

This document and the information contained herein are the property of Radian Memory Systems,

Inc. Statements may be subjective in nature and the company makes no guarantees regarding such

statements. All marks are the property of their respective owners.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Porting Radian's Block Translation Layer for Zoned Flash to SPDK

Abstract

Radian has developed a Block Translation Layer (BTL) that enables
turning sequential Flash zones into conventional zones. This
presentation will provide an overview of the application use cases,
software architecture, and analysis of what was involved in porting it to
spdk. It will conclude with a performance comparison between the BTL
in kernel mode versus the BTL in spdk using the same Zoned Flash
SSDs with the fio tester.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Agenda
● Why a Block Translation Layer (BTL)?

● Radian BTL Overview

● BTL Architecture

● Porting BTL to spdk

● Performance Comparison

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Why a Block Translation Layer (BTL)?

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Overwriting vs. Non-Overwriting
● NAND Flash is non-overwriting

● Flash in data centers is typically shared,
and hence accessed by applications
through a storage management layer

● Most modern storage management layers
are non-overwriting

 Software-Defined Flash (e.g., ZNS)

Overwriting
application

Non-Overwriting
application

Storage Management Layer
(typically non-overwriting)

Flash
Media

Flash
Media

Flash
Media

Shared Storage

NAS SAN
(AFA)

SDS
& HCI

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Local
Storage
Engine

Not Always
● Distributed Storage Management Layers

dependent upon local storage engines or
filesystems that could be overwriting

 Storage Management
 Layer

Shared Storage

Applications

Flash
Media

● Using in-kernel filesystems for
system maintenance/backup

Flash
Media

Flash
Media

Storage Management
Layer

Shared Storage

Applications

Flash
Media

Flash Translation
Layer

Flash
Media

System
Maintenance

Flash
Media

Primary Data

Flash Translation
Layer

Flash Translation
Layer

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Metadata Regions

● Non-overwriting Storage Management
Layers may have small regions of
metadata that do overwrite in-place

● Similar to using in-kernel filesystems for
local system management

● High performance and high churn

Storage Management
Layer

Shared Storage

Applications

Flash
Media

Flash Translation
Layer

Flash
Media

Metadata
Overwriting

Flash
Media

Primary Data

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

JESD218 &
 Zoned Flash

● Endurance and Data Retention

● JESD219 workload pattern requires overwriting

● RMS-350 first Zoned Flash SSD to pass JESD218 Qual

● Targeting compliance with the NVM ExpressTM specification
for Zoned Namespaces (ZNS)

RMS-350

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Block Translation Layer
● Direct Attached Storage (DAS)

● Overwriting local filesystem under a Storage Management Layer

● Overwriting local filesystem for system maintenance

● Non-overwriting Storage Management Layer that updates metadata
in-place

● Emulation of Storage Management Layers with system testing and
SSD qualification testing

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Radian BTL Overview

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Block Translation Layer
Supports overwriting requirements

Provides ‘Conventional’ overwriting zones

Radian
Block Translation Layer

Generic
FTL
SSD

Open-
Channel

Drive

Radian
Zoned
Drive

Host

Device

General BTL Features:
● Log structured design

analogous to purpose-built
Storage Management Layers

● Supports random overwriting
by serializing writes

● Clean & write at variable
granularities

● Runs in user-space or
kernel-space host
environments

With Radian Drives:
● Lower overall write-amp

● Delegated copy move

● Create multiple performance
isolated devices on a single
drive, or a single device
spanning multiple drives

Logical-to-Physical
Address Mapping

Log structured
cleaner

Scheduler &
Write Cache

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL Block Device Targets
(Single Drive, Single Namespace)

BTL
Block

Device

Radian Zoned
Drive

NS1: Flash

NS2: NVRAM

BTL
Block

Device

Conventional
Block Device

BTL
Block

Device

FTL-SSD

Namespace

BTL
Block

Device

Zoned Drive

Namespace
Analogous to the internal NVRAM of
an FTL used, Radian’s NVRAM
namespace can be used here:

● as a write-cache
● as a write-ahead log

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL Block Device Targets
(Multi-namespace)

BTL
Block

Device

Radian Zoned
Drive

NS1: Flash

NS3: NVRAM

NS2: Flash
BTL

Block
Device

BTL
Block

Device

Radian Zoned
Drive

NS1: Flash

NS3: NVRAM

NS2: Flash

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL
Block

Device

Radian Zoned
Drive 1

NS1: Flash

NS2: NVRAM

Radian Zoned
Drive N

NS1: Flash

NS2: NVRAM

.

.

.

BTL Block Device Targets
(Multi-drive)

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL Block Device Targets
(Multi-drive, Dual Host/Port)

BTL
Block

Device
(Host 1)

Radian Zoned
Drive 1

NS1: Flash

NS3: NVRAM

Radian Zoned
Drive N

NS1: Flash

NS3: NVRAM

.

.

.

BTL
Block

Device
(Host 2)

NS2: Flash

NS2: Flash

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Radian BTL Architecture

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Block Translation Layer

Radian
Block Translation Layer

Generic
FTL
SSD

Open-
Channel

Drive

Radian
Zoned
Drive

Host

Device

Address
Mapping

Cleaner Scheduler &
Write Cache

Metadata
System
Maintenance

Storage Management Layer Direct
Attached
Storage

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL
host
adapter

BTL Architecture

BTL core

Some Host
Environment

Examples:
● Linux
● Linux + io_uring
● SPDK

inject

eject

environmental
utilities

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

pil
Programmable
Injectable
Layers

Slice

Service A

inject

Slice

... ...

eject

eject

Event-Driven, Non-Blocking, Lock-free Each slice has a command queue,
internal state and a particular
constellation of services running on
a virtual core

Service B

Service C

Service A
Service B

Service C

Outgoing requests
& incoming
completions

Outgoing requests
& incoming
completions

Incoming
requests &
outgoing
completions

Generally, each
slice has a clone
of the same
constellation of
services

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

sfmx

zonewrite

pnv

overwrite = overwriting service (forward address map, top-level of cleaning)

= non-overwriting service (cache mapping, address translation, reverse
mapping, and the bottom-level of cleaning)

= write cache/buffer for NVRAM

= ASL translation and eject command marshalling

BTL Services

inject = front door from the host environment to the hfm core, assigns requests to
slices

eject = back door, ushers bottom level requests from hfm back to the host
environment, and receives their completions

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Services and Asynchronous Command Chains
static void
xxx_exec_mycmd(struct pil_service *svc,struct pil_command *cmd,struct pil_dispatch *d)
{
 ...
 pil_dispatch(CMD1(svc->subsvc1, subarg,
 CMD2(svc->subsvc2, subarg, cmd->next)), d);
 ...
}

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

k resources of
FLASH

or NVRAM

Slice

sfmx

inject

k resources of
FLASH or
NVRAM

Slice

sfmx
... ...

eject

eject

“SFMX” Mode
(Address-mapping, Non-overwriting, no caching, with ASL, no DCM)

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

k resources of
FLASHsfmx

inject

zonewrite pnv
x frames of

NVRAM

k resources of
FLASHsfmx

zonewrite pnv
x frames of

NVRAM

DCM

DCM

... ...

eject

eject

“Overwriting” Mode
(Overwriting (MAPPING & CLEANING), CACHING, ASL, and DCMs up and down)

overwrite

overwrite

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Services

Utilities

Major Components of BTL’s Core

sfmxzonewrite pnvoverwriteinject eject

space

btlstd

pil

= store dimensions, frame types,
forward and reverse mappings

= common argument types used
by BTL services

= asynchronous execution core
(defines devices, stores, targets,
services, commands, and the
host environment interface)

gc

resource

schedule

= garbage collection

= parallel resources, streams,
address management

= scheduling

config = configuration recipes

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Porting BTL to SPDK

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

What is SPDK*
● Storage Performance Development Kit (SPDK):

○ Set of tools and libraries for high performance, userspace storage applications
○ Leverages DPDK (Data Plane Development Kit)
○ All drivers run in userspace, avoiding syscalls and enabling zero-copy access
○ Uses polling instead of interrupts to reduce latency and latency variation
○ Lockless I/O path based on message-passing
○ Based on a polled-mode, asynchronous, lockless NVMe driver that passively runs in

userspace (spawns no threads of its own)
○ Started at Intel in 2013, open sourced in 2015 (BSD license)

* See https://spdk.io/doc/about.htm
* See Jim Harris, “Storage Performance Development Kit: Using DPDK to accelerate storage services,” Jim
Harris (Intel), DPDK Summit, San Jose, 2017, https://www.youtube.com/watch?v=4GOfsPDX_Bs

https://spdk.io/doc/about.htm
https://www.youtube.com/watch?v=4GOfsPDX_Bs

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Porting BTL Abstractions
Implemented by Each Host Environment:

● Command Injection/Ejection
● Threads
● Cores
● Targets
● Memory Allocation
● Time

Implemented Once:

● Devices
● Slices
● Services
● Stores
● Address Spaces
● Forward and Reverse Address Maps
● Storage Frames
● Resources
● Segments
● Asynchronous Command Chain Execution
● Other internal queuing/scheduling

● Configuration tools ● Configuration types

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Porting Device Interfaces
KERNEL

static const struct file_operations btl_fops = {
 .open = ...,
 ...
};

static const misdevice btl_ctrl = {
 .fops = &btl_fops,
 ...
};

...

misc_register(&btl_ctrl);

...

blk_alloc_queue(GFP_KERNEL);

...

blk_queue_make_request(dev->rq, request_func);

SPDK

static const struct spdk_bdev_fn_table btl_bdev_fn = {
 .submit_request = request_func,
};

...

spdk_io_device_register(btl_bdev,
 chan_create_cb, chan_destroy_cb, size, name);

...

spdk_bdev_register(btl_bdev->bdev);

An SPDK Block Device Module is the SPDK
equivalent of a device driver in SPDK.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

receive
request

(1)

inject
(2)

send
request

(5)

receive
IRQ ?
(8)

Return
handling

eject (4)

process
BTL

commands
(3)

Kernel Block Layer

NVMe Driver

receive
request
(6)

receive
IRQ ?
(7)

BTL Kernel Module
Combine BTL core with a
Linux kernel-based
host-environment
implementation

EXAMPLE: BTL as a Linux Kernel Driver

Kernel Block Layer

BTL core

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

receive
request

(1)

inject
(2)

send
request

(5)

receive
callback
(8)

eject (4)

process
BTL

commands
(3)

SPDK bdev

Polling NVMe Driver

receive
request
(6)

receive
callback
(7)

BTL SPDK library
Combines BTL core with
an SPDK-based
host-environment
implementation

EXAMPLE: BTL-based SPDK Application

SPDK bdev

BTL core

Return
handling

Could also be
a Zoned Bdev

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Challenges Encountered Porting to SPDK
● A few latent bugs with BTL that we didn’t detect in the kernel environment
● Configuration and initialization idiosyncrasies:

○ Had to refactor and make asynchronous some configuration code that had grown up in the
kernel host environment

● Core/thread management issues:
○ Not all SPDK apps handle threads the same way
○ Needed to ensure a single event loop per core
○ Needed to add a configurable thread mode to determine event loop mapping

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL Thread Management

Pcore-0

Pcore-1

btl-core-0

btl-core-1

btl-thread-0

btl-thread-1

btl-thread-2

.

.

.

.

.

.

.

.

.

BTL’s lightweight core and thread abstractions were used to
colocation of queues for services that needed to be on the same
thread, but there was no per-thread or per-core processing
associated with these abstractions when realized in the kernel.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL Thread Management

Pcore-0

Pcore-1

btl-core-0

btl-core-1

btl-thread-0

btl-thread-1

btl-thread-2

.

.

.

.

.

.

.

.

.

The naive mapping of threads to SPDK resulted in multiple event
loops running on the same physical core.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

BTL Thread Management

Pcore-0

Pcore-1

btl-core-0

btl-core-1

btl-thread-0

btl-thread-1

btl-thread-2

.

.

.

.

.

.

.

.

.
We ultimately needed to arrange for the virtual cores on a single
physical core to share a single SPDK event loop.

In addition, the fio plugin does NOT use the standard
SPDK reactor mechanism, which led to additional changes
to the thread model.

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

SPDK Applications

fio plugin* iSCSI
App*

NVMe/TCP
App*

BTL BTLBTL

* Based on SPDK source code examples

Standard SPDK thread modelCustom thread model

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

SPDK Porting Effort

People
x Level

x Weeks

2019 2020

Aug Sep Oct Nov Dec Jan

Analysis 2 x 30% x 3 2

Prototyping & Design 2 x 30% x 5 3

Implementation 3 x 20% x 16 12

Test & Debug 3 x 10% x 11 3

TOTAL EFFORT (Person-Weeks) 20

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Performance Comparison

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

SPDK Value Proposition (Intel)

Throughput

SSDs per CPU Core

“SPDK enables (*):
● more CPU cycles for storage

services
● lower I/O latency”

(*) Jim Harris, “Storage Performance Development
Kit: Using DPDK to accelerate storage services,”
Jim Harris (Intel), DPDK Summit, San Jose, 2017,
https://www.youtube.com/watch?v=4GOfsPDX_Bs

Kernel

SPDK

https://www.youtube.com/watch?v=4GOfsPDX_Bs

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

● RMS 350D 4TB SSDs
● 4 cores per SSD
● AIC Chassis (24 cores)
● Linux Kernel = 4.18?
● SPDK = 19.07.1
● Aggregated Dual host / Dual

port
● Total K-IOPS (Read + Write)
● 70% Read / 30% Write
● Random 4K
● Queue depth 32
● Throughput as perceived by

fio workload generator
● Measured after hours of

preconditioning to stabilize
write amplification

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

● RMS 350D 4TB SSDs
● 4 cores per SSD
● AIC Chassis (24 cores)
● Linux Kernel = 4.18?
● SPDK = 19.07.1
● Aggregated Dual host / Dual

port
● Total K-IOPS (Read + Write)
● 70% Read / 30% Write
● Random 4K
● Queue depth 32
● Throughput as perceived by

fio workload generator
● Measured after hours of

preconditioning to stabilize
write amplification

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Performance Test Considerations
Device? CPU? Device-limited or CPU-limited?

Device preconditioned or fresh?

Workload generator (e.g., perf, bdevperf, fio)?

What software stacks are being compared?

References:
- Kariuka & Verma, “SPDK Performance Report, Release 18.04”, Intel, July 2018,

https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_18.04.pdf
- Jim Harris, “Storage Performance Development Kit: Using DPDK to accelerate storage services,” Jim Harris (Intel),

DPDK Summit, San Jose, 2017, https://www.youtube.com/watch?v=4GOfsPDX_Bs

https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_18.04.pdf
https://www.youtube.com/watch?v=4GOfsPDX_Bs

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Comparing Throughput of Software Stacks
Consider CPU cost for a given, fixed amount of throughput X = XA = XB
Performance limited only by CPU (not network or device limited)

StackA
StackB

U=1

SA SB

Maximum Throughput Ratio of Two Stacks:

 MB / MA = (X/SB)/(X/SA) = SA/SB

X = XA = SA * MA

MA = XA/SA = X/SA

MA = Maximum
CPU-limited
throughput of
stack A

MB = Maximum
CPU-limited
throughput of
stack B

X = XB = SB * MB

MB = XB/SB = X/SB

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

At Maximum Throughput of Weakest Stack
There is excess CPU capacity on the stronger stack, room to add functionality

StackA
StackB

StackA

StackA

StackB

StackB

Excess capacity
available on StackB

At maximum throughput
MA on StackB

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Adding Functionality
Reduces the Maximum Throughput Ratio between the two functionally equivalent stacks

StackA
StackB

SA+delta SB+delta

MB+delta / MA+delta = SA+delta/SB+delta

delta

delta
StackA

StackB

U=1

SA SB

 MB / MA = SA/SB >

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Similar Effect on Latency Improvements

Kernel

SPDK

Device

Device

Device

Device

Function

Function

Null block device

Real Device

Device with
additional
functionality

Kernel

SPDK

Kernel

SPDK

T1

dL

T2

dL

T2 >> T1

dL/T2 << dL/T1

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

CPU(Read) < CPU(Write) < CPU(Write+GC)

The Greater the CPU Cost of Additional Functionality,
The Smaller the System Performance Difference

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Conclusion

● BTL’s port to SPDK was straightforward:
○ Add a new host-specific environment for SPDK
○ Fix bugs in the BTL core that went unnoticed until a host environment change

● SPDK
○ CPU efficiency enables more functionality per core
○ Performance metrics observed at the SPDK/Kernel level do

not translate to the same relative performance at the system

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

Potential Future Work

● SPDK
○ Zoned bdev in SPDK
○ ZNS NVMe driver (async support)
○ Further performance characterization:

■ Possible advantages of SPDK around control/determinism for user space
implementations compared to going through kernel (context switching)

■ kernel vs userspace cost of memory usage

● io_uring
○ Support for ZNS
○ Could reduce impact of kernel/spdk performance

Property of Radian Memory Systems, Inc. Copyright 2020. All rights reserved.

